230 Chapter 7

Identifying needs and establishing requirements

arrangeMeeting
USER INTENTION

arrange a meeting

SYSTEM RESPONSIBILITY

request meeting attendees and CONStrajps

identify meeting attendees and constraints
suggest potential dates

choose preferred date

book meeting

Figure 7.10 An essential use case for arranging a meeting in the shared calendar applic

above. Scenarios are concrete stories that concentrate on realistic and sp
activities. They therefore can obscure broader issues concerned with the

organizational view. On the other hand, traditional use cases contain certain
sumptions, including the fact that there is a piece of technology to interact
and also assumptions about the user interface and the kind of interaction to|
designed. 1

Essential use cases represent abstractions from scenarios, i.e., they represent
more general case than a scenario embodies, and try to avoid the assumptions”
traditional use case. An essential use case is a structured narrative consisting
three parts: a name that expresses the overall user intention, a stepped descri
of user actions, and a stepped description of system responsibility. This divisio
tween user and system responsibilities can be very helpful during conceptual ds
when considering task allocation and system scope, i.e., what the user is respon:
for and what the system is to do.

An example essential use case based on the library example given abo
shown in Figure 7.10. Note that the steps are more generalized than those i
use case in Section 7.6.2, while they are more structured than the scenario in S
tion 7.6.1. For example, the first user intention does not say anything about ty
ing in a list of names, it simply states that the user identifies meeting atten:
This could be done by identifying roles, rather than people’s names, from an
ganizational or project chart, or by choosing names from a list of people W
calendars the system keeps, or by typing in the names. The point is that a
time of creating this essential use case, there is no commitment to a particularl
teraction design.

Instead of actors, essential use cases are associated with user roles. One 0
differences is that an actor could be another system, whereas a user role is just
not a particular person, and not another system, but a role that a number of di
ent people may play when using the system. Just as with actors, though, producié
an essential use case begins with identifying user roles.

Construct an essential use case “locateBook” for the user role “Library member” of the
brary catalog service discussed in Activity 7.4.

7.7 Task analysis 231

locateBook
USER INTENTION

identify self

SYSTEM RESPONSIBILITY

verify identity

request appropriate details
offer known details

offer search results
note search results
quit system

close

Note that here we don’t talk about passwords, but merely state that the users need to
identify themselves. This could be done using fingerprinting, or retinal scanning, or any
other suitable technology. The essential use case does not commit us to technology at this
point. Neither does it specify search options or details of how to initiate the search.

Task analysis

Task analysis is used mainly to investigate an existing situation, not to envision new
systems or devices. It is used to analyze the underlying rationale and purpose of
what people are doing: what are they trying to achieve, why are they trying to
achieve it, and how are they going about it? The information gleaned from task
analysis establishes a foundation of existing practices on which to build new re-
quirements or to design new tasks.

Task analysis is an umbrella term that covers techniques for investigating cog-
nitive processes and physical actions, at a high level of abstraction and in minute
detail. In practice, task analysis techniques have had a mixed reception. The most
widely used version is Hierarchical Task Analysis (HTA) and this is the technique
we introduce in this chapter. Another well-known task analysis technique called
GOMS (goals, operations, methods, and selection rules) that models procedural
knowledge (Card et al., 1983) is described in Chapter 14.

Hierarchical task analysis

Hierarchical Task Analysis (HTA) was originally designed to identify training needs
(Annett and Duncan, 1967). It involves breaking a task down into subtasks and then
into sub-subtasks and so on. These are then grouped together as plans that specify
how the tasks might be performed in an actual situation. HTA focuses on the physi-
cal and observable actions that are performed, and includes looking at actions that
are not related to software or an interaction device at all. The starting point is a user
goal. This is then examined and the main tasks associated with achieving that goal
are identified. Where appropriate, these tasks are subdivided into subtasks.
Consider the library catalog service, and the task of borrowing a book. This task
can be decomposed into other tasks such as accessing the library catalog, searching
by name, title, subject, or whatever, making a note of the location of the book, going
to the correct shelf, taking it down off the shelf (provided it is there) and finally tak-

232 Chapter 7/ ldentitying needs and establishing requirements

0. In order to borrow a book from the library
1. go to the library
2 ﬁnd the required book
2.1 access library catalog
2.2 access the search screen
2.3 enter search criteria
2.4 identify required book
2.5 note location
3. go to correct shelf and retrieve book
4. take book to checkout counter
plan O: do 1-3-4. If book isn’t on the shelf expected, do 2-3-4.
plan 2: do 2.1-2.4-2.5. If book not identified do 2.2-2.3-2.4-2.5.

Figure 7.11 An HTA for borrowing a book from the library.

it to the check-out counter. This set of tasks and subtasks might be performe
different order depending on how much is known about the book, and how
the user might be with the library and the book’s likely location. Figure 7.1
these subtasks and some plans for different paths through those subtasks. Inc
tion shows the hierarchical relationship between tasks and subtasks.

Note how the numbering works for the task analysis: the number of th
corresponds to the number of the step to which the plan relates. For examp
2 shows how the subtasks in step 2 can be ordered; there is no plan 1 because;
has no subtasks associated with it. {

An alternative expression of an HTA is a graphical box-and-line notation. Fi
ure 7.12 shows the graphical version of the HTA in Figure 7.11. Here the s
are represented by named boxes with identifying numbers. The hierarchical
tionship between tasks is shown using a vertical line. If a task is not decom
any further then a thick horizontal line is drawn underneath the correspondin

plan 0:
do 1-3-4.
If book isn’t on the shelf expected, do 2-3-4.

plan 2:
do 2.1-2.4-2.5. ;
If book not identified from information available, do 2.2-2.32

Figure 7.12 A graphical representation of the task analysis for borrowing a book.

7.7 Task analysis 233

Plans are also shown in this graphical form. They are written alongside the vertical
line emitting from the task being decomposed. For example, in Figure 7.12 plan 2 is
specified next to the vertical line from box 2 “find required book.”

Look back at the scenario for arranging a meeting in the shared calendar application. Per-
form hierarchical task analysis for the goal of arranging a meeting. Include all plans in your
answer. Express the task analysis textually and graphically.

The main tasks involved in this are to find out who needs to be at the meeting, find out the
constraints on the meeting such as length of meeting, range of dates, and location, find a suit-
able date, enter details into the calendar, and inform attendees. Finding a suitable date can
be decomposed into other tasks such as looking in the departmental calendar, looking in in-
dividuals’ calendars, and checking potential dates against constraints. The textual version of
the HTA is shown below. Figure 7.13 shows the corresponding graphical representation.

0. In order to arrange a meeting
1. compile a list of meeting attendees
2. compile a list of meeting constraints
3. find a suitable date
3.1 identify potential dates from departmental calendar
3.2 identify potential dates from each individual’s calendar
3.3 compare potential dates
3.4 choose one preferred date
4. enter meeting info calendars
5. inform meeting participants of calendar entry
plan 0: do 1-2-3. If potential dates are identified, do 4-5. If no potential dates can be identi-
fied, repeat 2-3.

plan 3: do 3.1-3.2-3.3-3.4 or do 3.2-3.1-3.3-3.4

plan 0:
do 1-2-3.
If potential dates are identified, do 4-5. If not repeat 2-3

plan 3:
do 3.1-3.2-3.3-3.4
ordo 3.2-3.1-3.3-3.4

Figure 7.13 A graphical representation of the meeting HTA.

	1
	2

